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This article investigates marginal screening for detecting the presence of significant predictors in high-dimensional regression. Screening
large numbers of predictors is a challenging problem due to the nonstandard limiting behavior of post-model-selected estimators. There is
a common misconception that the oracle property for such estimators is a panacea, but the oracle property only holds away from the null
hypothesis of interest in marginal screening. To address this difficulty, we propose an adaptive resampling test (ART). Our approach provides
an alternative to the popular (yet conservative) Bonferroni method of controlling family-wise error rates. ART is adaptive in the sense that
thresholding is used to decide whether the centered percentile bootstrap applies, and otherwise adapts to the nonstandard asymptotics in the
tightest way possible. The performance of the approach is evaluated using a simulation study and applied to gene expression data and HIV
drug resistance data.
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1. INTRODUCTION

The problem of selecting significant predictors is a central
aspect of scientific discovery, and has become increasingly im-
portant in an era in which massive datasets are readily available
(Fan and Li 2006). Much of the modern statistical literature in
this area focuses on consistency of variable selection in high-
dimensional settings based on machine learning and data mining
techniques (e.g., Fan and Li 2001; Zou and Hastie 2005; Huang,
Ma, and Zhang 2008; Fan and Lv 2008; Genovese et al. 2012).
A major gap in this literature, however, has been the scarcity of
formal hypothesis testing procedures that take variable selection
into account; the oracle property enjoyed by many variable se-
lection methods in the presence of high dimensionality cannot
be applied directly for testing whether a post-model-selected
variable is significant. In bioinformatics, for example, variable
selection techniques based on penalization (such as lasso, scad,
etc.) are routinely used to produce lists of differentially ex-
pressed genes that are most related to disease risk, but few
methods for obtaining valid p-values have been developed.

A more traditional approach to the selection of significant
predictors is multiple testing to control either family-wise error
rate (FWER) or false-discovery rate (Benjamini and Hochberg
1995; Dudoit et al. 2003; Efron 2006; Dudoit and van der Laan
2008; Efron 2010). Procedures that control FWER (e.g., Bon-
ferroni, or Holm’s procedure) are often criticized as being too
conservative (in the sense of having low power). False-discovery
rate methods, on the other hand, although having greater power,
incur the cost of inflated FWER. Our aim in the present article
is to introduce a more powerful single test that can be used as an
alternative screening procedure to detect the presence of some
significant predictor while rigorously controlling FWER.

The proposed procedure uses marginal linear regression to
select the predictor (from among covariates X1, . . . , Xp) that
has maximal sample correlation with a scalar outcome Y (as

Ian W. McKeague (E-mail: im2131@columbia.edu) is Professor, and Min
Qian (E-mail: mq2158@columbia.edu) is Assistant Professor, Department of
Biostatistics, Columbia University, New York, NY 10027. Research of the first
author is supported by NIH Grant R01GM095722-01 and NSF Grant DMS-
1307838. Research of the second author is supported by NSF Grant DMS-
1307838.

Color versions of one or more of the figures in the article can be found online
at www.tandfonline.com/r/jasa.

in marginal screening or correlation learning, Genovese et al.
2012). The test is based on θ̂n, the estimated marginal regression
coefficient of the selected predictor. If there is a unique predictor,
say Xk0 , maximally correlated with the outcome, then the selec-
tion procedure consistently estimates k0, and θ̂n is asymptoti-
cally normal; if all predictors are uncorrelated with the outcome,
then the selected predictor does not converge (in probability) and
θ̂n has a nonnormal limiting distribution. In particular, the lim-
iting distribution is discontinuous (at zero) as a function of the
regression coefficient of Xk0 (where k0 is not identifiable), and
this “nonregularity” causes nonuniform convergence.

Breiman (1992) drew early attention to the issue of invalid
post-model-selection inference, calling it the “quiet scandal” of
statistics; even earlier references are mentioned in Berk et al.
(2013). Samworth (2003) gave a detailed account of the inac-
curacy of bootstrap methods applied to super-efficient estima-
tors. Leeb and Pötscher (2006) (and other articles by the same
authors) established that nonuniform limiting behavior of post-
model-selected estimators is at the root of the problem, and that
estimates of asymptotic null distributions in such settings can
give a misleading picture of finite-sample performance. In par-
ticular, calibrating a test based on θ̂n in a way that does not adapt
to the implicit post-model-selection will be extremely inaccu-
rate. This type of nonregularity occurs in various other settings
as well, for example, when a nuisance parameter is only de-
fined under an alternative hypothesis (Davies 1977), and when
the parameter of interest under the null hypothesis is on the
boundary of the parameter space (Andrews 2000). McCloskey
(2012) surveyed nonstandard testing problems in econometrics,
and introduced some Bonferroni-based size-correction methods
designed to improve power. As far as we know, however, there
is not yet a resolution of these issues for marginal screening.

In this article, we introduce an adaptive resampling test (ART)
for marginal screening that adapts to the small sample behavior
of θ̂n in terms of a local model. Under local alternatives, we find
an explicit representation of the asymptotic distribution of θ̂n and
construct a suitable bootstrap estimator of this distribution that
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is consistent, thus circumventing the nonregularity mentioned
above. Under nonlocal alternatives, we show that the critical
values obtained in this way agree asymptotically with those
used by the oracle (who is given knowledge of k0), so ART can
be expected to provide good power as well.

Several new approaches to post-model selection inference
for linear regression have been proposed in recent years. Mein-
shausen, Meier, and Bühlmann (2009) introduced a random
sample splitting procedure in the high-dimensional setting to
obtain (conservative) Bonferroni-adjusted p-values following
variable selection. Chatterjee and Lahiri (2011) developed a
modified bootstrap method that provides an asymptotically valid
confidence region for the regression parameters based on the
lasso estimator; this method depends on the presence of at least
one active predictor, so it is not applicable to marginal screening
(under the null hypothesis there is no active predictor).

More relevant to marginal screening, the covariance test re-
cently introduced by Lockhart et al. (2014) uses a forward step-
wise lasso procedure to test for active predictors entering a
sparse linear model under the assumption of normal errors. Also
in the sparse linear model setting with normal errors, but further
assuming that the predictors are nearly uncorrelated, Ingster,
Tsybakov, and Verzelen (2010) and Arias-Castro, Candès, and
Plan (2011) had studied the detection boundary and optimal-
ity properties of general classes of multiple testing procedures
(including Bonferroni and higher criticism). Berk et al. (2013)
developed a valid method of post-model selection inference that
is feasible for up to about p = 20 predictors, also assuming nor-
mal errors. In various sparse high-dimensional settings, Belloni,
Chernozhukov, and Hansen (2013), Bühlmann (2013), Zhang
and Zhang (2014), and Ning and Liu (2015) had established
asymptotically valid confidence intervals for a preconceived re-
gression parameter after variable selection on the remaining
predictors, but this does not apply to marginal screening (where
no regression parameter is singled-out a priori).

This article is organized as follows. We formulate the problem
and discuss the issue of nonregularity in Section 2. In Section 3,
we develop the ART procedure and establish the consistency of
the underlying bootstrap. Simulation studies and applications to
gene expression data and HIV drug resistance data are presented
in Section 4. Concluding discussion appears in Section 5, and
proofs are collected in the Appendix.

2. MARGINAL REGRESSION AND NONREGULARITY

Consider a scalar outcome Y and a p-dimensional vector of
covariates X = (X1, . . . , Xp)T such that the marginal variance
of each covariate is finite and nonzero. Marginal regression
consists in using separate linear models to predict Y from each
Xk . Let k0 be the label of a covariate that maximizes the absolute
correlation with Y:

k0 ∈ arg max
k=1,...,p

|Corr(Xk, Y )|,

and let α0 + θ0Xk0 be the best linear predictor based on Xk0 , that
is,

(α0, θ0) = arg min
α,θ∈R

E(Y − α − θXk0 )2

=
(

EY − θ0EXk0 ,
cov(Xk0 , Y )

var(Xk0 )

)
. (1)

We are interested in testing whether at least one of the covariates
is correlated with Y , for which it suffices to check whether Xk0

and Y are correlated. This is equivalent to testing

H0 : θ0 = 0 versus Ha : θ0 ̸= 0.

Given an iid sample of size n, let α̂n, θ̂n, and k̂n be the least-
square estimates of α0, θ0, and k0, respectively:

α̂n = PnY − θ̂nPnXk̂n
, θ̂n =

ĉov(Xk̂n
, Y )

v̂ar(Xk̂n
)

,

k̂n ∈ arg max
k=1,...,p

∣∣Ĉorr(Xk, Y )
∣∣ ,

where Pn is the empirical distribution, and the hats indicate
sample versions. It is natural to base the test on θ̂n, but cali-
bration is problematic because the distribution of

√
n(θ̂n − θ0)

does not converge uniformly with respect to θ0, as mentioned
in the Introduction. The nonuniformity occurs in the neighbor-
hood of θ0 = 0. Specifically, there exists a bounded continuous
function h : R → R such that fn(θ0) ≡ Eh(

√
n(θ̂n − θ0)) does

not converge uniformly in any neighborhood of θ0 = 0, despite
converging pointwise. To see this, first note that under mild
conditions

√
n(θ̂n − θ0)

d→ U ≡
{

Zk0/Vk0 if θ0 ̸= 0,

ZK/VK if θ0 = 0,

where Vk = var(Xk), K = arg maxk=1,...,p Z2
k/Vk , and

(Z1, . . . , Zp)T is a mean-zero normal random vector with
covariance matrix depending on parameters of the full linear
model (this is a special case of Theorem 1). From the form of
the distribution of U, we can choose h so that f∞(θ0) ≡ Eh(U )
is discontinuous at θ0 = 0 (i.e., the nonregularity mentioned
in the Introduction). If fn were to converge uniformly to f∞
on some compact neighborhood of zero, we would have a
contradiction because each fn is continuous, and the uniform
limit of a sequence of continuous functions on a compact
interval is continuous.

To address this problem, in the next section we develop
a formal test procedure (ART) inspired by work of Cheng
(2008, 2015) concerning robust confidence intervals for nonlin-
ear regression parameters in the presence of weak-identifiability.
Other variations of this approach have been used by Laber and
Murphy (2011) to construct a confidence interval for the clas-
sification error, by Laber et al. (2014) in a sequential decision-
making problem, and by Laber and Murphy (2015) to provide
robust confidence intervals for adaptive lasso. As already noted,
the distribution of

√
n(θ̂n − θ0) does not converge uniformly in

the neighborhood of θ0 = 0, so its small sample behavior can be
very far from normal when the true parameter is close to zero.
Therefore, an understanding of the asymptotic behavior of θ̂n
under local alternatives plays a crucial role in devising a suitable
test, or more generally in providing robust confidence intervals
for θ0.

3. ADAPTIVE RESAMPLING TEST

In this section, we develop the proposed ART procedure for
detecting the presence of a significant predictor. The idea is
to adapt to the inherent nonregular behavior of the post-model-
selected estimator θ̂n in a way that accurately captures its asymp-
totic behavior in

√
n-neighborhoods of the null hypothesis.
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We frame the problem in terms of the general local linear
model

Y = α0 + XT βn + ϵ, (2)

where α0 ∈ R, βn ∈ Rp, the noise ϵ has mean 0, finite variance,
and is uncorrelated with X, and βn = β0 + n−1/2b0, where b0 ∈
Rp is the local parameter. The distributions of ϵ and X are
assumed to be fixed, so only the distribution of Y depends on
n (although we suppress n in the notation for Y). The relevant
hypotheses are now

H0 : θn = 0 versus Ha : θn ̸= 0,

where θn = cov(Xkn
, Y )/var(Xkn

) and kn is the label of a com-
ponent of X that maximizes absolute correlation with Y .

Our first result gives the asymptotic distribution of θ̂n. To state
the result, we need the notation

k̄(b) ≡ arg max
k=1,...,p

|Corr(Xk, XT b)|

for any b ∈ Rp. Note that kn = k̄(βn) under the local model.
If k0 ≡ k̄(β0) is unique (so β0 ̸= 0), then kn → k0, and θn is
asymptotically bounded away from zero (a nonlocal alterna-
tive). On the other hand, if β0 = 0 and k̄(b0) is unique, then
kn = k̄(b0); also θn is in the neighborhood of zero and repre-
sents a local alternative. Finally, if β0 = b0 = 0, then kn is not
well-defined and the null hypothesis θn = 0 holds. We need the
uniqueness of the most active predictor k0 (away from the null
hypothesis), but this seems to be a very mild condition because
the likelihood that there would be two or more predictors having
exactly the same maximal correlation with Y seems remote in
practice. Even in practice, as we will see in the simulation study,
nonuniqueness of the maximally correlated predictor does not
adversely affect power.

Theorem 1. Suppose that k0 = k̄(β0) is unique when β0 ̸= 0,
and k̄(b0) is unique when β0 = 0 and b0 ̸= 0. Then, under the
local model (2),

√
n(θ̂n − θn)

d→
{

Zk0 (β0)/Vk0 if β0 ̸= 0,

ZK (0)/VK + (CK/VK − Ck̄(b0)/Vk̄(b0))T b0 if β0 = 0,

where K = arg maxk=1,...,p[Zk(0) + CT
k b0]2/Vk , Ck =

cov(Xk, X), and (Zk(β))pk=1 is a mean-zero normal random
vector with covariance matrix$(β) given by that of the random
vector with components
(

(X − EX)T β − (Xk − EXk)CT
k β/Vk + ϵ

)
(Xk − EXk),

for k = 1, . . . , p, and $(β0) is assumed to exist.

The nonregularity at β0 = 0 is explained by the dependence
of the limiting distribution on the (nonidentifiable) local param-
eter b0. The limiting distribution is nevertheless continuous as a
function of b0 ∈ Rp into the space of distribution functions (this
is a simple consequence of Lemma A.3 in the Appendix), and
the convergence is uniform over compact subsets of Rp, unlike
the limiting behavior discussed in the previous section, so finite-
sample accuracy should be less of an issue when designing a
screening test using this result. On the other hand, naive resam-
pling methods that do not take into account the local asymptotic

behavior will fail to provide consistent estimates of the distri-
bution of

√
n(θ̂n − θn), as discussed in the Introduction for the

nonlocal case.
To get around this problem, we decompose

√
n(θ̂n − θn) in a

way that isolates the possibility that β0 ̸= 0 by comparing |Tn|
to some threshold λn (to be specified later), where Tn = θ̂n/sn

is the post-model-selected t-statistic and sn is the standard error
of the slope estimator when regressing Y on Xk̂n

. Specifically,
√

n(θ̂n − θn) =
√

n(θ̂n − θn)1|Tn|>λn or β0 ̸=0

+
√

n(θ̂n − θn)1|Tn|≤λn,β0=0

=
√

n(θ̂n − θn)1|Tn|>λn or β0 ̸=0

+
[

Zn,k̂n
+ ĉov(Xk̂n

, XT b0)

v̂ar(Xk̂n
)

−cov(Xkn
, XT b0)

var(Xkn
)

]
1|Tn|≤λn,β0=0, (3)

where Zn,k = Gn[ϵ(Xk − PnXk)], Gn =
√

n(Pn − Pn) is the
empirical process, and Pn is the distribution of (X, Y ). It is
clear that the nonparametric bootstrap is consistent for the first
term in (3) if λn = o(

√
n) and λn → ∞, since it is easily shown

that P(|Tn| > λn) → 1β0 ̸=0. The second term is more problem-
atic though because k̂n does not converge in probability to k0

when β0 = 0. Denote the term in the square brackets by Vn(b),
indexed by b = b0 ∈ Rp. Note that when this term is active
(under β0 = 0), k̂n = Kn(b0) and kn = K̄(b0), where

Kn(b) = arg max
k=1,...,p

[
Zn,k + ĉov(Xk, XT b)

]2

v̂ar(Xk)

and

K̄(b) = arg max
k=1,...,p

[cov(Xk, XT b)]2

var(Xk)
,

so

Vn(b) = Zn,Kn(b) + ĉov(XKn(b), XT b)
v̂ar(XKn(b))

−
cov(XK̄(b), XT b)

var(XK̄(b))
. (4)

All parts of Vn(b) are now seen to be smooth functions of Pn,
so it is reasonable to expect that a consistent bootstrap can
be constructed by replacing Pn by its nonparametric bootstrap
P ∗

n , and replacing Pn by Pn. In such a construction, the event
indicated in the second term of (3) is naturally replaced by the
event that |T ∗

n | ≤ λn and |Tn| ≤ λn.
Here and throughout the article, a superscript ∗ is used to in-

dicate the nonparametric bootstrap (sometimes called “bootrap-
ping in pairs” in regression settings, to distinguish it from the
residual bootstrap). The above arguments lead to our main re-
sult showing that

√
n(θ̂n − θn) can indeed be consistently boot-

strapped under the general local model. The precise definition
of V ∗

n is given at the start of the proof.

Theorem 2. Suppose all assumptions in Theorem 1 hold, and
the tuning parameter λn satisfies λn = o(

√
n) and λn → ∞ as

n → ∞. Then, under the local model (2),
√

n(θ̂∗
n − θ̂n)1|T ∗

n |>λn or |Tn|>λn
+ V ∗

n (b0)1|T ∗
n |≤λn, |Tn|≤λn
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converges to the limiting distribution of
√

n(θ̂n − θn) condition-
ally (on the data) in probability.

ART procedure. ART provides a bootstrap calibration for the
test statistic

√
nθ̂n based on a special case of the above theorem.

Under H0 we have the simplification V ∗
n (b0) = V ∗

n (0). For some
nominal level γ , let cl and cu be the lower and upper γ /2
quantiles, respectively, of

A∗
n =

√
n(θ̂∗

n − θ̂n)1|T ∗
n |>λn or |Tn|>λn

+ V ∗
n (0)1|T ∗

n |≤λn, |Tn|≤λn
.

If
√

nθ̂n falls outside the interval [cl, cu], then we reject H0 and
conclude that there is at least one significant predictor.

Before applying ART, it is advisable to standardize all the
variables Xk and Y (by sample mean and standard deviation),
which has the advantage of making the procedure scale invariant
(θ̂n is then the maximal sample correlation); our results naturally
extend, but we develop the theory only for the unstandardized
variables to keep the presentation simple.

Robust confidence intervals. The above theorem also allows
the construction of a robust confidence interval for θn by treating
b0 as unknown, then finding the widest bootstrap quantiles over
all b0. Here by “robust” we mean asymptotically valid uniformly
over b0. For testing purposes, however, this approach would be
too conservative and also computationally intensive (grid search
over Rp is needed); for this reason, in ART we set b0 = 0 under
the null, so the critical values can be readily computed from A∗

n.
In contrast, Laber and Murphy (2015) proposed using almost
sure bounds over their local parameter b0 to find robust confi-
dence intervals for adaptive lasso; this involves less computation
than distributional bounds, but is still computationally intensive,
and it produces more conservative confidence intervals than the
distributional approach.

Choice of the tuning parameter λn. The above theorem
requires that λn = o(

√
n) and λn → ∞ as n → ∞. Under

this condition, the thresholding provides a consistent pretest
(for θn = 0) with asymptotically negligible Type I error rate:
limn→∞ P(|Tn| > λn|θn = 0) = 0. On the other hand, if λn in-
creases too quickly, the pretest will be conservative. One simple
choice would be to set λn =

√
a log n, for some constant a > 0,

but it is also desirable that λn increase with p, see Section 5
for discussion about the null limiting behavior of Tn as both p
and n → ∞. To that end, note that by Theorem 1 in the special
case that ϵ and X are independent, under θn = 0 (or b0 = 0 and

β0 = 0) we have Tn
d→ Z̃K , where K = arg maxk=1,...,p Z̃2

k , and
(Z̃1, . . . , Z̃p)T is a vector of standard normal random variables.
Thus, for any fixed λ > 0,

P
(
|Tn| > λ

∣∣∣θn = 0
)

→ P
(

max
k=1,...,p

|Z̃k| > λ

)

≤
p∑

k=1

P
(
|Z̃k| > λ

)
.

Hence, the pretest Type I error rate can be asymptotically
controlled below level γ , without sacrificing consistency, by
choosing

λn = max
{√

a log n, upper γ /(2p)-quantile of N (0, 1)
}

. (5)

In the simulation study below, we describe a way of specifying
the constant a via the double bootstrap, and this is used whenever
we refer to ART in the sequel.

Forward stepwise ART. If we find a significant predictor us-
ing ART, it would be reasonable to continue applying the pro-
cedure in a forward stepwise fashion until no more significant
predictors are detected. That is, in successive stages the resid-
ual Y − α̂n − θ̂nXk̂n

is treated as a new outcome variable and
marginal regression carried out on the remaining predictors.
Although it would be challenging to extend our theoretical re-
sults to this procedure, we find that in real data applications it
performs well, and in a similar way to the covariance test of
Lockhart et al. (2014), as we discuss in the HIV drug resistance
example considered in the next section.

4. NUMERICAL STUDIES

In this section, we study the performance of the proposed
ART procedure using simulated data and give illustrations of
the approach in two real data examples.

4.1 Finite Sample Simulations

We compare the performance of ART with four procedures
that are commonly used for detecting the presence of a signifi-
cant predictor:

Likelihood ratio test (LRT). This test is based on assuming
a full linear model involving all of the covariates, and is
applicable when n > p. Under the null hypothesis, all the
regression coefficients are zero. The reduction in the residual
sum of squares is compared to the residual sum of squares for
the full model using an F-ratio (see, e.g., sec. 7.4 of Johnson
and Wichern 2007). When the full linear model holds, it can
be seen that both null and alternative hypotheses are identical
to those used in ART.
Multiple testing with Bonferroni correction. As in ART,
marginal linear models are used to predict Y from each Xk . A
t-test with Bonferroni correction is then carried out to detect
whether each regression coefficient is nonzero. The intersec-
tion of the p null hypotheses coincides with the null used in
ART.
Centered percentile bootstrap (CPB). This procedure is simi-
lar to ART, except

√
n(θ̂∗

n − θ̂n) is used to estimate the upper
and lower quantiles of

√
n(θ̂n − θ0), providing critical values

for the test statistic
√

nθ̂n, see Efron and Tibshirani (1993).
Higher criticism (HC). This is a test originally proposed by
John Tukey for determining the overall significance of a col-
lection of independent p-values. We apply the statistic HC+

N

developed by Donoho and Jin (2004, 2015), which is expected
to perform well if the predictors are nearly uncorrelated.

We consider three examples for the data-generating model: (i)
Y = ϵ, (ii) Y = X1/4 + ϵ, and (iii) Y =

∑p
k=1 βkXk + ϵ, where

β1 = · · · = β5 = 0.15, β6 = · · · = β10 = −0.1, and βk = 0 for
k = 11, . . . , p. In the first example, there is no active predic-
tor, in the second there is a single active predictor, and in the
third there are 10 active predictors and the maximally correlated
predictor is not unique. The covariate vector X is distributed as
p-dimensional normal with each component Xk ∼ N (0, 1), an
exchangeable correlation structure Corr(Xj,Xk) = ρ for j ̸= k,
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Figure 1. Empirical rejection rates based on 1000 samples generated from models (i), (ii), and (iii) as the dimension ranges from p = 10 to
p = 200, for n = 100 (top row) and n = 200 (bottom row), and ρ = 0.8.

where ρ takes values 0, 0.5, and 0.8, and the noise ϵ ∼ N (0, 1)
is independent of X.

We consider two sample sizes (n = 100 and 200), and five
values of the dimension (p = 10, 50, 100, 150, and 200). A
nominal 5% significance level is used throughout. The bootstrap
sample size is taken as 1000. To specify the threshold λn in
ART, the double bootstrap is implemented by generating 1000
bootstrap estimates θ̂∗

n , then choosing λn so that 5% of the ARTs
(based on 1000 nested bootstrap samples) with test statistic√

n(θ̂∗
n − θ̂n) reject.

Empirical rejection rates based on 1000 Monte Carlo repli-
cations are reported in Figures 1–3. For model (i), the figures
provide Type I error rates, which should be compared with the
5% nominal rate; for models (ii) and (iii), the figures provide
the power of each test. The ART procedure has good control
of the Type I error rate throughout (compared to all the other
methods), while consistently maintaining relatively high power.
Comparing the results of models (ii) and (iii), nonuniqueness of
the maximally correlated predictor has no adverse effect on the
power of ART.

Bonferroni is highly conservative when ρ = 0.5 and 0.8, see
the left panels of Figures 1 and 2. The CPB method is highly
anti-conservative, with empirical Type I error rates exceeding
15% for both sample sizes (and thus out of range for most
of the panels on the left). The LRT effectively controls the
Type I error rate at around the nominal 5% level when it is
applicable, but it has very low power compared with all the

other methods, except under model (iii) in the “classical case”
of small numbers of predictors that are not highly correlated,
see the right panels of Figures 2 and 3. Higher criticism fails to
control Type I error except when the predictors are independent
(Figure 3), in which case it is slightly anti-conservative and has
excellent power under model (iii), but very poor under model
(ii). That is, HC performs well (under zero correlation) when
there are multiple active predictors, but not in the sparse case
of only one active predictor. Except in the case of independent
predictors, when Bonferroni is slightly better, ART outperforms
all the competing procedures when both Type I error and power
are taken into account, and the improvement increases with the
correlation between predictors.

4.2 Asymptotic Power

In this section, we carry out a simulation study to assess the
asymptotic power of ART compared with that of the Bonferroni
procedure. The computational expense of implementing ART
is high because of the double bootstrap, so our full simulation
study of the previous section is only feasible for small sample
sizes. Nevertheless, we are able to assess asymptotic power by
making use of our results on the local model in Section 3.

Consider the local model Y = (n−1/2b0)X1 + ϵ, where
b0 ∈ R. Here X and ϵ are generated in the same way as
Section 4.1, but now we only consider ρ = 0.5. The local pa-
rameter b0 takes the special form (b0, 0, . . . , 0)T , and we allow
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Figure 2. Empirical rejection rates as in Figure 1 except with lower correlation between predictors: ρ = 0.5.

Figure 3. Empirical rejection rates as in Figure 1 except for independent predictors.
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1428 Journal of the American Statistical Association, December 2015

Figure 4. Asymptotic Type I error and power of ART (boxplots) compared with Bonferroni (circles) as a function of the local parameter b0,
for p = 10 and 50, ρ = 0.5, calculated using Steps 1–3 in Section 4.2.

b0 to vary over a grid in [0, 5], in increments of 0.5. We set
β0 = 0, b0 = (b0, 0, . . . , 0)T and make use of the given covari-
ance structure of X and the explicit form of the limiting dis-
tribution in Theorem 1 to generate draws from the asymptotic
distribution of

√
nθ̂n. Specifically, we carry out the following

steps:

1. For each value of b0 on the grid, take 5000 draws
from the limiting distribution of

√
n(θ̂n − θn) given in

Theorem 1 (this distribution only depends on b0 and the
given distribution of (X, Y )), then add b0 to obtain draws
from the limiting distribution of

√
nθ̂n. Based on these

draws, we can obtain the (approximate) rejection rate of
the test statistic

√
nθ̂n for any given rejection region. In

particular, the asymptotic rejection rate of ART (for any
given b0 on the grid) can be calculated by referring to
the rejection rate corresponding to the particular critical
values cl and cu generated by ART.

Figure 5. Asymptotic Type I error and power of ART compared with Bonferroni for p = 1000 and ρ = 0.5, where ART is implemented
using a fixed threshold λn specified by a = 2, 4, 5, 8, and each boxplot is based on 20 independent replications with n = 10,000.
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Figure 6. Gene expression example. Left panel: histogram of
√

n(θ̂∗
n − θ̂n) showing that the two-sided CPB p-value is 3.2%. Right panel:

histogram of A∗
n showing that the two-sided ART p-value is 17.2%.

2. To assess the asymptotic power of ART at each given
b0, we generate 10 independent large samples (with n =
5000) from the local model, find cl and cu for each sample,
and display in a boxplot the corresponding asymptotic
rejection rates (using the results of Step 1).

3. For comparison, we also plot the asymptotic power of the
Bonferroni procedure, which is approximated using 1000
samples each of size n = 5000.

The results are presented in Figure 4 for p = 10 and 50. The
main source of variation within each boxplot is due to random-
ness over the 10 independent samples drawn from the local
model, rather than bootstrap randomness (in view of bootstrap
consistency and the large sample size n = 5 000). The median
of each boxplot provides a suitable reference point to compare
with the asymptotic power of Bonferroni (indicated by the cir-
cle). Note that ART provides accurate control of asymptotic
Type I error, and, as expected, Bonferroni is slightly conser-
vative. In terms of median power, ART always outperforms
Bonferroni, and can provide an additional 25% power (e.g., at
b0 = 3 for p = 10, and at b0 = 3.5 for p = 50).

The cost of implementing the double bootstrap part of ART
makes it prohibitive to extend the results in Figure 4 to larger
p, but if we fix λn, then it becomes practical to run the simula-
tions for p = 1000. Figure 5 shows how the asymptotic power
of ART compares with Bonferroni as the constant a used to
specify λn takes values 2, 4, 5, and 8 (the corresponding λn are
4.3, 6.1, 6.8, and 8.6). Note that as a increases (going from one
panel to the next), ART becomes more stable and provides more
accurate Type I error control, but the overall power decreases.
At small values of a, ART behaves like the CPB, which is anti-
conservative (as we have already seen in the previous section),
whereas at larger values the influence of CPB is diluted. For the
CPB (which corresponds to setting λn = 0), the plot (not shown)
appears very similar to that for a = 2; also, for a > 8 the plots
appear very similar to a = 8. The best choice of a, therefore,
is a trade-off between Type I error control and power; com-
paring with Figure 4, ART with double bootstrapping appears
to achieve a satisfactory balance in this regard. Also note that,
even at the largest value a = 8, ART can provide an additional
20% power over Bonferroni, and thus outperform Bonferroni
by a considerable margin in high-dimensional settings as well,

Figure 7. HIV drug resistance example. Left panel: training set p-values (mean ± SD) over 50 random splits of the data for forward stepwise
ART (solid line), standard forward stepwise regression (dash-dot line), and the 0.05 alpha level (dotted). Right panel: test set error for the
corresponding models (including all previously selected variables); the two lines are almost indistinguishable.
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at least when there is a high degree of correlation among the
components of X.

4.3 Gene Expression Example

We consider gene expression profiles from the tumors of
n = 156 patients diagnosed with a common type of adult brain
cancer (glioblastoma), collected as part of the Cancer Genome
Atlas pilot project (TCGA 2008). Our analysis is based on log
gene expression levels X at p = 181 loci along chromosome
1. We are interested in detecting the presence of a gene that is
significantly related to log-survival time Y .

We compare the results from applying the Bonferroni, CPB,
and ART procedures; LRT is not applicable since p > n. The
three methods yield very different p-values. The smallest Bon-
ferroni adjusted p-value is 40.8%, suggesting that no gene is
significantly related to Y . The CPB and ART p-values are 3.2%
and 17.2%, respectively, from 1000 bootstrap samples. Figure 6
shows how these p-values are calculated. Thus, the CPB method
suggests the presence of a significant genetic effect, whereas
ART does not.

4.4 HIV Drug Resistance Example

Our second example uses data from the HIV Drug Resistance
Database (2014), an important public resource for understanding
how HIV-1 mutation patterns cause resistance to antiretroviral
drugs (Rhee et al. 2002). We will compare our results with those
of Lockhart et al. (2014), who applied their covariance test to
data on the susceptibility (a measure of drug resistance) of the
nucleotide reverse transcriptase inhibitor lamivudine (3TC). We
code susceptibility on a log-scale (Y), and each predictor Xj is
taken as indicating the presence/absence of a mutation at a given
sequence position. The viral sequence positions are indexed by
j. Excluding missing data and rare mutations resulted in data on
p = 103 positions and a total of 1266 isolates.

We randomly split the data 50 times into a training set of
size n = 126 and a test set of size 1140. For each split, we
carry out 20 steps of forward stepwise ART and standard for-
ward stepwise regression using the training data, and calculate
the corresponding prediction error (including all previously se-
lected variables) using the test data. The left panel of Figure 7
shows the training data p-values (mean ± SD) for the newly en-
tered predictor at each step, over the 50 random splits, and the
right panel shows the corresponding prediction errors (mean ±
SD). Forward stepwise ART detects one very highly significant
mutation, but no more, as confirmed by the test set error plot,
and this result is roughly consistent with the findings of Lock-
hart et al. (2014). Standard forward stepwise regression picks
out at least 10 mutations, but there is no improvement in test
set error after the first predictor enters the model; moreover, the
test error almost exactly coincides with ART.

5. DISCUSSION

In this article, we have developed an adaptive resampling test
(ART) for detecting the existence of a significant predictor, Xk0 ,
from among predictors X1, . . . , Xp. The procedure is designed
to adjust to the nonregular limiting behavior of the estimated
marginal regression coefficient θ̂n of the selected predictor. This
is done by using a thresholded version of the bootstrap that
adapts to the nonregularity: if there is at least one significant

predictor, it reduces to a centered percentile bootstrap, other-
wise it mimics the local (nonuniform) asymptotic behavior of
θ̂n. We have shown that in simulation studies, ART performs
favorably compared with standard methods such as Bonferroni,
but also compared with more sophisticated methods such as
higher criticism. The advantage of ART may stem from it being
designed to take into account correlations between predictors,
while also avoiding distributional assumptions (the nonpara-
metric bootstrap steps in ART are essentially distribution free).
We have restricted attention to linear models, but our approach
has much wider applicability (e.g., generalized linear models,
quantile regression, and censored time-to-event outcomes), and
these will be studied in future articles.

Although our simulation results suggest that ART is use-
ful and remarkably stable in “large p, small n” settings, the
asymptotic theory that we have used to calibrate ART relies
on assuming a fixed p, with n tending to infinity. In view of
the conservative nature of the Bonferroni procedure in high-
dimensional settings, there is a pressing need for more powerful
tests in this area. In future work, it would be of interest to
develop the asymptotic theory of ART for the case of p grow-
ing with n, although this would be very challenging. As far
as we know, formal testing procedures that provably control
FWER and adjust to nonregularity under diverging p are not
yet available, except for higher criticism in the case that the
predictors are nearly uncorrelated, as established by Ingster,
Tsybakov, and Verzelen (2010) and Arias-Castro, Candès, and
Plan (2011). In the only other instance we know of, under the
strong assumption that X1, . . . , Xp, Y are iid N (0, 1), results
of Cai and Jiang (2012) can be used to find the weak limit of
ρ̂n = maxk=1,...,p |Ĉorr(Xk, Y )| and thus devise an asymptoti-
cally correct calibration: if p = pn → ∞ at subexponential rate,

log(p)/n → 0, then ρ̂n →p 0 and nρ̂2
n − 2 log p + log log p

d→
F , where F (y) = e−e−y/2/(2

√
π). In the super-exponential case,

log(p)/n → ∞, then ρ̂n →p 1 and there is a similar weak limit.
Another interesting direction for future work would be to

study the forward stepwise version of ART discussed in Section
3. Modifications to ART when applied stepwise in this way
would be needed to adjust for the implicit dependence among
the new outcomes. By repeating such a procedure until no more
significant predictors are detected, the aim would be to correctly
identify all active predictors.

APPENDIX: PROOF

Proof of Theorem 1. For k = 1, . . . , p, let (α̂k, θ̂k) =
arg min(α,θ) Pn(Y − α − θXk)2. Then k̂n = arg mink=1,...,p Pn(Y −
α̂k − θ̂kXk)2 and (α̂n, θ̂n) = (α̂k̂n

, θ̂k̂n
). It is easy to verify that

α̂k = Pn(Y − θ̂kXk),

√
nθ̂k =

√
nĉov(Xk, Y )

v̂ar(Xk)

=
√

nĉov(Xk, XT )βn + Gn[ϵ(Xk − PnXk)]
v̂ar(Xk)

= (GnXkXT − PnXkGnXT − GnXkPnXT )βn

v̂ar(Xk)

+Gn[ϵ(Xk − PnXk)] − PnϵGnXk +
√

ncov(Xk, XT )βn

v̂ar(Xk)
,

(A.1)
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where Pn is the distribution of (Y, X), and the mean residual squared
error

R̂k ≡ Pn[Y − α̂k − θ̂kXk]2 = v̂ar(Y ) − v̂ar(Xk)θ̂2
k . (A.2)

The result then follows immediately from the following two lemmas.
The first lemma verifies the oracle property for marginal regression
under the assumption that there is at least one active predictor; the proof
is included for completeness. The second lemma gives the (nonregular)
asymptotic behavior of θ̂n when there are no active predictors.

Lemma A.1. If all conditions in Theorem 1 hold and β0 ̸= 0, then

k̂n
a.s.→ k0 and

√
n(θ̂n − θn)

d→ Zk0 (β0)/Vk0 , where Zk0 (β0) is defined
in Theorem 1.

Proof. Denote R̂ ≡ (R̂1, . . . , R̂p)T . When β0 ̸= 0, var(XT β0) > 0.
By the strong law of large numbers (SLLN)

v̂ar(Y ) − R̂
var(XT β0)

a.s.→
(

Corr2(X1, XT β0), . . . , Corr2(Xp, XT β0)
)T

.

Since k̂n = arg maxk=1,...,p[v̂ar(Y ) − R̂k]
/

var(XT β0) and
Corr2(Xk, XT β0) is maximized at k = k0, it follows immediately that
k̂n

a.s.→ k0.
Next, denote X̂ = Xk̂n

and Xn = Xkn . Since Pn[Y − PnY − θ̂n(X̂ −
PnX̂)]X̂ = 0 and Y = α0 + XT βn + ϵ, we have

√
n(θ̂n − θn)v̂ar(X̂)
=

√
nĉov(X̂, XT )βn +

√
nPn

(
ϵ(X̂ − PnX̂)

)
−

√
nv̂ar(X̂)

× cov(Xn, X)T βn + cov(Xn, ϵ)
var(Xn)

=
√

nĉov(Xk0 , XT )βn +
√

nPn

(
ϵ(Xk0 − PnXk0 )

)

−
√

nv̂ar(Xk0 )
cov(Xk0 , X)T βn + cov(Xk0 , ϵ)

var(Xk0 )
+ oPn (1)

= Gn

[(
ϵ + (X − PnX)T β0 − cov(Xk0 , X)T β0

var(Xk0 )
(Xk0 − PnXk0 )

)

×(Xk0 − PnXk0 )
]

+ oPn (1),

where the second equality uses k̂n
a.s.→ k0 and kn → k0 as n → ∞,

and the third equality follows from the law of large numbers (LLN)

and cov(ϵ, Xk0 ) = 0. Similarly, v̂ar(X̂)
Pn→ Vk0 ≡ var(Xk0 ). The proof

is completed using Slutsky’s lemma and the central limit theorem
(CLT). !

Lemma A.2. If all conditions in Theorem 1 hold and β0 = 0, then
√

n(θ̂n − θn)
d→ ZK (0)/VK + (CK/VK − Ck̄(b0)/Vk̄(b0))T b0.

Proof. Since (Z1(0), . . . , Zp(0))T is a normal random vector and
|Corr(Xj , Xk)| < 1 for j ̸= k, it is easy to see that

(Zj (0) + CT
j b0)2

Vj

̸= (Zk(0) + CT
k b0)2

Vk

for any j ̸= k a.s. (A.3)

So K is unique a.s.
Denote θ̂ = (θ̂1, . . . , θ̂p)T . Note that when β0 = 0,

√
nβn = b0. By

the CLT and Slutsky’s lemma, we see from (A.1) that

√
nθ̂

d→
(

Z1(0) + CT
1 b0

V1
, . . . ,

Zp(0) + CT
p b0

Vp

)T

.

From (A.2), we have

n
[
v̂ar(Y ) − R̂

]
= (

√
nθ̂ ) ⊙ (

√
nθ̂ ) ⊙

(
v̂ar(X1), . . . , v̂ar(Xp)

)T
,

where ⊙ denotes the elementwise (Hadamard) product, so, by the
continuous mapping theorem and Slutsky’s lemma,

( √
nθ̂

n
[
v̂ar(Y ) − R̂

]
)

d→

⎛

⎝

(
(Z1(0) + CT

1 b0)/V1, . . . , (Zp(0) + CT
p b0)/Vp

)T

(
(Z1(0) + CT

1 b0)2/V1, . . . , (Zp(0) + CT
p b0)2/Vp

)T

⎞

⎠ .

Define h(t) = (1arg maxk tk=1, . . . , 1arg maxk tk=p)T , where
t = (t1, . . . , tp)T ∈ Rp . Note that h is continuous at t if arg maxk tk is

unique. Thus, using (A.3) and since
√

nθ̂n =
√

nθ̂
T
h
(
n[v̂ar(Y ) − R̂]

)
,

the result follows by applying the continuous mapping theorem to the
above display. !

Lemma A.3. Let Z be a p-dimensional random vector and f :
R2p → Rp a function such that f (z, ·) is continuous for every z ∈
Rp , and f (Z, b)j ̸= f (Z, b)k a.s. for all j ̸= k and b ∈ Rp . Then
K(b) ≡ arg maxk=1...,p f (Z, b)k is unique a.s. Also, if bl → b0, then
K(bl) = K(b0) for l sufficiently large a.s.

The proof is omitted. An immediate consequence of this lemma is
the continuity of the limiting distribution in Theorem 1 as a function
of b0; this is seen by setting f (z1, . . . , zp, b)k = (zk + CT

k b)2/Vk for
k = 1, . . . , p, and using (A.3).

Proof of Theorem 2. The notation θ̂∗
n and k̂∗

n means that θ̂n and
k̂n are based on n iid observations taken from Pn. The bootstrapped
process V ∗

n (b) in the statement of the theorem is defined by reexpressing
(4), along with K̄(b) and Kn(b), in terms of Pn and Pn operating on
functions of (X, Y ), then replacing Pn by Pn and Pn by P ∗

n throughout.
In the case of Zn,k in which ϵ is not observed, we also replace ϵ by
ϵ̂n = ϵ̂n(X, Y ) ≡ Y − α̂n − θ̂nX̂, resulting in

Z∗
n,k = G∗

n[ϵ̂n(Xk − P ∗
n Xk)] = G∗

n[ϵ̂nXk] − [G∗
n ϵ̂n][P ∗

n Xk], (A.4)

where G∗
n =

√
n(P ∗

n − Pn) is the bootstrapped empirical process. As is
conventional in empirical process theory, P ∗

n , Pn, and Pn are assumed
to operate only on functions that are defined on (X, Y ), explaining why
P ∗

n Xk can be separated in the above display.
Let EM denote expectation conditional on the data, and let

P M be the corresponding probability measure. We will show that

1|T ∗
n |>λn or |Tn|>λn

PM

→ 1β0 ̸=0 and 1|T ∗
n |≤λn 1|Tn|≤λn

PM

→ 1β0=0 conditionally
(on the data) in probability. This together with Lemmas A.4 and A.5
implies the result.

For k = 1, . . . , p, the bootstrapped marginal regression coefficient
θ̂∗
k satisfies

√
nθ̂∗

k =
√

n[P ∗
n XkY − (P ∗

n Xk)(P ∗
n Y )]

P ∗
n X2

k − (P ∗
n Xk)2

= G∗
nXkY − G∗

nXkP ∗
n Y − (PnXk)(G∗

nY ) +
√

n[PnXkY − (PnXk)(PnY )]
P ∗

n X2
k − (P ∗

n Xk)2

= G∗
nXkY − G∗

nXkP ∗
n Y − (PnXk)(G∗

nY ) +
√

nθ̂k[PnX
2
k − (PnXk)2]

P ∗
n X2

k − (P ∗
n Xk)2

.

(A.5)

When β0 = 0, by Lemma A.2 and the condition that

λn → ∞ as n → ∞, we have T ∗
n /λn

PM

→ 0 in probability. When
β0 ̸= 0, it is easy to verify that |θn| → |CT

k0
β0|/Vk0 , which is positive

under the condition that k0 is unique. Thus,

P M (|T ∗
n | ≤ λn) =P M (|(θ̂∗

n − θ̂n) + (θ̂n − θn) + θn| ≤ λns
∗
n)

≤P M
(
|θn| ≤ λns

∗
n + |θ̂∗

n − θ̂n| + |θ̂n − θn|
)

tends to zero in probability when β0 ̸= 0, where the convergence fol-
lows from Lemma A.1, Lemma A.4, and the condition thatλn = o(

√
n).
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Hence,

EM |1|T ∗
n |≤λn − 1β0=0| = EM |1|T ∗

n |>λn − 1β0 ̸=0|
= P M (|T ∗

n | > λn, β0 = 0)
+P M (|T ∗

n | ≤ λn, β0 ̸= 0)
= P M (|T ∗

n | > λn|β0 = 0)1β0=0

+P M (|T ∗
n | ≤ λn|β0 ̸= 0)1β0 ̸=0

tends to zero in probability. This implies that 1|T ∗
n |>λn

PM

→ 1β0 ̸=0 and

1|T ∗
n |≤λn

PM

→ 1β0=0 conditionally in probability. Since 1|Tn|≤λn converges
to 1β0=0 in probability, the result follows from Slutsky’s lemma.

Lemma A.4. If the conditions in Theorem 1 hold and β0 ̸= 0,

then k̂∗
n

PM

→ k0 conditionally (on the data) a.s. and
√

n(θ̂∗
n − θ̂n)

d→
Zk0 (β0)/Vk0 conditionally (on the data) in probability.

Proof. It follows from (A.5), the SLLN and Slutsky’s lemma that,
when β0 ̸= 0,

v̂ar∗(Xk)θ̂∗
k = n−1/2[G∗

nXkY − G∗
nXkP ∗

n Y − (PnXk)(G∗
nY )

]

+θ̂k[PnX
2
k − (PnXk)2]

PM

→ CT
k β0

and θ̂∗
k

PM

→ CT
k β0/Vk a.s. for k = 1, . . . , p. Denote the bootstrap mean

squared error

R̂∗
k ≡ P ∗

n [Y − α̂∗
k − θ̂∗

k Xk]2 = v̂ar∗(Y ) − (θ̂∗
k )2v̂ar∗(Xk),

where v̂ar∗(Y ) = P ∗
n Y 2 − (P ∗

n Y )2 and v̂ar∗(Xk) = P ∗
n X2

k − (P ∗
n Xk)2.

Then we can write

k̂∗
n = arg max

k=1,...,p

v̂ar∗(Y ) − R̂∗
k

var(XT β0)
= arg max

k=1,...,p

(θ̂∗
k )2v̂ar∗(Xk)
var(XT β0)

since the denominator plays no role. By Slutsky’s lemma

(θ̂∗
k )2v̂ar∗(Xk)
var(XT β0)

PM

→ Corr2(Xk, XT β0)

a.s. for k = 1, . . . , p, so we obtain

P M (k̂∗
n ̸= k0) =P M

⎛

⎝
⋃

k:k ̸=k0

{
(θ̂∗

k0
)2v̂ar∗(Xk0 )

var(XT β0)
≤ (θ̂∗

k )2v̂ar∗(Xk)
var(XT β0)

}⎞

⎠

≤
∑

k:k ̸=k0

P M

(
(θ̂∗

k0
)2v̂ar∗(Xk0 )

var(XT β0)
≤ (θ̂∗

k )2v̂ar∗(Xk)
var(XT β0)

)

→ 0 a.s.,

where the convergence follows from the condition that k0 is unique
when β0 ̸= 0.

Recall that ϵ̂n ≡ Y − α̂n − θ̂nX̂, where X̂ ≡ Xk̂n
. Note that Pnϵ̂n =

0. By the definition of θ̂∗
n , we have

√
n(θ̂∗

n − θ̂n)[P ∗
n X2

k̂∗
n
− (P ∗

n Xk̂∗
n
)2]

=
√

n[P ∗
n Xk̂∗

n
Y − (P ∗

n Xk̂∗
n
)(P ∗

n Y ) − θ̂n(P ∗
n X2

k̂∗
n
− (P ∗

n Xk̂∗
n
)2)]

=
√

n(P ∗
n Xk̂∗

n
ϵ̂n − P ∗

n Xk̂∗
n
P ∗

n ϵ̂n)

+
√

nθ̂n

[
(P ∗

n Xk̂∗
n
)2 − P ∗

n X2
k̂∗
n
+ P ∗

n Xk̂∗
n
X̂ − (P ∗

n Xk̂∗
n
)(P ∗

n X̂)
]

= G∗
n ϵ̂n(Xk̂∗

n
− PnXk̂∗

n
) − G∗

nXk̂∗
n
(P ∗

n − Pn)ϵ̂n
−G∗

n ϵ̂n(Pn − Pn)Xk̂∗
n

+
√

nθ̂n

[
(P ∗

n Xk̂∗
n
)2 − P ∗

n X2
k̂∗
n
+ P ∗

n Xk̂∗
n
X̂ − (P ∗

n Xk̂∗
n
)(P ∗

n X̂)
]
.

(A.6)

The last term in (A.6) is oPM (1) a.s. because the first and last terms
within the square bracket cancel asymptotically, similarly for the sec-

ond and third terms, due to k̂∗
n

PM

→ k0 and k̂n → k0 a.s. We next show

that the first term in (A.6) converges in distribution to Zk0 (β0) condi-
tionally (on the data) in probability. By Lemma A.1, it is easy to verify

that θ̂n
Pn→ θ0 " CT

k0
β0/Vk0 and α̂n

Pn→ α0 + EXT β0 − θ0EXk0 . Denote
ϵ̄ = ϵ + (X − EX)T β0 − θ0(Xk0 − EXk0 ). Then the first term can be
decomposed as

G∗
n ϵ̂n[(Xk̂∗

n
− PnXk̂∗

n
− (Xk0 − PnXk0 )] + G∗

n[(ϵ̂n − ϵ̄)(Xk0 − PnXk0 )]
+G∗

n[ϵ̄(Xk0 − PnXk0 )]. (A.7)

The first term in (A.7) is oPM (1) a.s. since k̂∗
n

PM

→ k0. The second term
in (A.7) can be written as

[(α0 + EXT β0 − θ0EXk0 ) − α̂n]G∗
n(Xk0 − PnXk0 )

+(P ∗
n − Pn)[(Xk0 − PnXk0 )XT b0]

+(θ0 − θ̂n)G∗
n[Xk0 (Xk0 − PnXk0 )]

−θ̂nG∗
n[(X̂ − Xk0 )(Xk0 − PnXk0 )],

which is oPM (1) in probability by bootstrap consistency of the sample
mean (see, e.g., Theorem 23.4 of van der Vaart 1998), and the fact that
X̂ = Xk0 for n sufficiently large a.s. Bootstrap consistency of the sample
mean also gives that the third term in (A.7) converges in distribution to
Zk0 (β0) conditionally (on the data) in probability.

Similarly, the second and third terms in (A.6) and P ∗
n X2

k̂∗
n
−

(P ∗
n Xk̂∗

n
)2 − var(Xk0 ) can be shown to be oPM (1) in probability. The

result then follows from Slutsky’s lemma. !
Lemma A.5. If all conditions in Theorem 1 hold and β0 = 0, then

V ∗
n (b0) converges to the same limiting distribution as

√
n(θ̂n − θn)

conditionally (on the data) in probability.

Proof. Define Zn, Mn(b), and M ′(b) to be p-vectors with kth com-
ponents given by Zn,k = Gn[ϵ(Xk − PnXk)],

[ĉov(Xk, XT b) + Zn,k]2

v̂ar(Xk)
and

[cov(Xk, XT b)]2

var(Xk)
,

respectively. Let Wn(b) be a p × p matrix with the (j, k)th component
given by

ĉov(Xk, XT b) + Zn,k

v̂ar(Xk)
− cov(Xj , XT b)

var(Xj )
.

Also, let Dn(b) and D′(b) be p-vectors of zeros, apart from a 1 in the
entry that maximizes Mn(b) and M ′(b), respectively. Then

Vn(b) = D′(b)T Wn(b)Dn(b).

Similarly, define M(b), W (b), and D(b) (without indexing by n) to be
processes of the same form as Mn(b), Wn(b), and Dn(b), except with
Zn,k replaced by Zk(0), and the sample variances/covariances replaced
by their population versions.

Referring to the notation in (4), it is clear that when β0 = 0,
√

n(θ̂n − θn) = Vn(b0) = D′(b0)T Wn(b0)Dn(b0)
d→ D′(b0)T W (b0)D(b0).

Moreover, the second equality in the above display also holds for the
bootstrap version. Writing the bootstrapped version of Zn,k in (A.4) as

Z∗
n,k = G∗

n[ϵ(Xk − PnXk)] + G∗
n[(ϵ̂n − ϵ)(Xk − PnXk)]

+[(Pn − P ∗
n )Xk][G∗

n ϵ̂n],

and using arguments similar to those in the proof Lemma A.4 for

handling (A.7), we have Z∗
n

d→ (Z1(0), . . . , Zp(0))T conditionally (on

the data) in probability. As a result, (D̂′
n(b0), W ∗

n (b0), M∗
n(b0))

d→
(D′(b0), W (b0), M(b0)) conditionally (on the data) in probability,
where D̂′

n(b) is the sample version of D′(b), and W ∗
n (b) and M∗

n(b)
are the bootstrap versions of Wn(b) and Mn(b), respectively. Finally,
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using similar arguments to those at the end of the proof of Lemma A.2,
along with the continuous mapping theorem, we conclude that

V ∗
n (b0) = D̂′

n(b0)T W ∗
n (b0)D∗

n(b0)
d→ D′(b0)T W (b0)D(b0)

conditionally (on the data) in probability. !

[Received May 2014. Revised September 2015.]
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